
Abstract A general analytical model for the descrip-

tion of phase transformation kinetics, with kinetic

parameters that are time and temperature dependent,

can be given that exhibits the roles of (i) the nucleation

index, a, and (ii) the temperature dependence of site

saturation. Recipes for straightforward deduction of

the growth exponent, n, and the effective activation

energy, Q, have been presented. It has also been shown

how the values of the constant activation energies for

nucleation and growth, QN and QG, can be derived

from the dependence of n and Q on time and tem-

perature. The applicability of the kinetic model and of

the recipes for isothermally and isochronally con-

ducted phase transformations has been tested by ana-

lytical and numerical calculations and by application to

the crystallization kinetics of amorphous Zr50Al10Ni40,

as measured by means of isochronal differential scan-

ning calorimetry.

Introduction

Solid-state phase transformations play an important

role in the production of very many materials as they

provide the means to optimize the microstructure and

thereby the properties of materials. Therefore, a great

interest exists for a comprehensive description of the

kinetics, i.e. the time-temperature behaviour, of phase

transformations [1–3].

Solid-state phase transformations are generally the

outcome, for both isothermally and non-isothermally

conducted annealings, of three, often simultaneously

operating, mechanisms: nucleation, growth and

impingement. Recently, a general, modular, numerical

kinetic model [2, 3] has been proposed that recognizes

the three mechanisms, nucleation, growth, and

impingement of growing new phase particles, as entities

that can be modelled separately. The modular approach

is applicable to both isothermally conducted (time

dependent) and isochronally conducted (temperature

dependent) transformations, as verified by experiments

[4, 5].

Applying such a model to a phase transformation, it is

assumed that throughout the temperature/time range of

interest the transformation mechanism is the same,

which is called ‘‘iso-kinetic’’. It has been often claimed

that occurrence of ‘‘isokinetics’’ implies that the kinetic

parameters are assumed to be constant with respect

to time and temperature. Indeed, this is compatible with

the well-known and very often used analytical descrip-

tion of transformation kinetics according to Johnson,

Mehl and Avrami (JMA) [6–9], that in fact only holds for

special, extreme cases of nucleation, growth and

impingement. However, many experimental results of

phase transformation kinetics that have been reported

and fitted with a JMA (-like) model, show that often the

measured kinetics cannot be described with constant

values for the kinetic parameters as the growth

exponent, n, and the effective activation energy, Q
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(e.g. [10–12]): the fitted parameters, n and Q, appear to

be different for different stages of the transformation, i.e.

the transformation would not be iso-kinetic and fitting of

JMA kinetics to such phase transformations therefore

only yields a phenomenological description.

To deal with such complications and recognizing the

strong need for a comprehensive description of phase

transformation kinetics, a general, analytical phase

transformation model was proposed that incorporates

a range of nucleation and growth mechanisms [13–15].

Use of analytical expressions has an advantage over

numerical calculations because e.g. the influence of

different nucleation, growth and impingement models

can be easily identified and investigated and is gener-

ally preferred, if possible. This model has been applied

successfully to practical cases [14, 15]. The model leads

to equations for the degree of transformation, f(0 £
f £ 1), that have the structure of the JMA equation but

with time dependent kinetic parameters, as n(t) and

Q(t), for isothermal transformation, or temperature

dependent kinetic parameters, as n(T) and Q(T), for

isochronal transformation [13, 15]:

f ¼ 1� exp K0 tð Þn tð Þtn tð Þ exp � n tð ÞQ tð Þ
RT

� �� �
ð1Þ

f ¼ 1� exp K0 Tð Þn Tð Þ RT2

U

� �n Tð Þ

exp � n Tð ÞQ Tð Þ
RT

� � !

ð2Þ

with K0 as the time/temperature dependent pre-expo-

nential factor and F as the constant heating rate

(= isochronal annealing).

The effective, overall, time or temperature dependent

activation energy can be interpreted as a combination

of the constant activation energies for nucleation and

growth, QN and QG, according to [2, 13],

Q ¼
d
m QG þ n� d=mð ÞQN

n
ð3Þ

with m as the growth mode parameter (m = 1 for

interface-controlled growth; m = 2 for volume diffu-

sion controlled growth) and d as the dimensionality of

the growth (d = 1, 2, 3).

On the basis of the general, analytical model, a

transformation can still be considered as ‘‘iso-kinetic’’

in the sense indicated above, even if kinetic parameters

as n and Q distinctly vary during the course of a

transformation.

It was found that isothermal JMA kinetics on the

basis of the traditional description of the continuous

nucleation mechanism (constant nucleation rate) can-

not be used to interpret available experimental results

[16]: a nucleation rate increasing with time (e.g. auto-

catalytic nucleation [17]) or decreasing with time can

occur. Hence, an extension of classical continuous

nucleation can be proposed by incorporating the

so-called nucleation index, a [16, 18]: N(t) = n¢ ta for

isothermal annealing, with n¢ as a constant and a as the

nucleation index: a = 0 implies zero nucleation rate;

a = 1 implies constant nucleation rate (dN(t)/dt = n¢);

a > 1 implies a nucleation rate increasing with time and

0 < a < 1 implies a nucleation rate decreasing with

time.

In the case of site saturation it is usually assumed (as

in isothermal decomposition of substitutional solid

solutions) that the number of supercritical particles

(=nuclei) is temperature independent. This assumption

in general does not hold. Accordingly, it appears

appropriate to introduce an ‘‘activation energy’’, Qs,

controlling the temperature dependency of the number

of frozen-in supercritical particles (= nuclei) acting in

the site saturation mechanism upon progressing trans-

formation.

Both complications discussed above and symbolized

by the parameters a and QS need to be addressed in a

generally applicable, quantitative description of trans-

formation kinetics. This is the purpose of sections ‘The

nucleation, a and Temperature dependence of site

saturation’.

Although, in principle, fitting of the analytical model,

on the basis of different combinations of nucleation,

growth and impingement mechanisms, to the experi-

mental results can be made, this procedure can be very

time-consuming and cumbersome (see e.g. Refs. [13–

15]). The most important kinetic parameters for phase

transformation are the growth exponent, n, the effective

activation energy, Q, and the activation energies of

nucleation and growth, QN and QG, respectively. Reci-

pes for the direct extraction of values for these kinetic

parameters from transformation-rate data will be given

in section ‘Recipes for determination of kinetic param-

eters from isothermally and isochronally conducted

transformations’.

Synopsis of theoretical background [13, 15]

The term site saturation is used in those cases where the

number of supercritical particles (= nuclei) of the new

phase does not change during the transformation: all

nuclei, of number N* per unit volume, are present at

t = 0 already. This implies for the nucleation rate:
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_NðTÞ ¼ N�d t � 0ð Þ; for isothermal transformation

ð4aÞ

_N T tð Þð Þ ¼ N�d
T tð Þ � T0

U

� �
;

for isochronal transformation

ð4bÞ

with d(t – 0) and d T tð Þ�T0

U

� �
denoting Dirac functions

and N as the number of nuclei per unit volume. For

isochronal annealing with a constant heating rate, F,

T(t) = T0 + F t with T0 = T(t = 0) and F = dT(t)/dt.

According to the classical nucleation theory the

nucleation rate is determined by the number of new

phase particles of critical size and the rate of jumping of

atoms through the interface between the particles of

critical size and the parent phase. The frequency of

jumping through the interface is given by an Arrhenius

term, the argument of which thus varies with tempera-

ture as – A/T, where A is a positive constant (see Eq. 5).

The number of particles of critical size depends on an

activation energy DG*, which can be approximated as B/

DT2 [19], where B is a positive constant and DT is the

undercooling or overheating with respect to the tem-

perature at which the two phases are in equilibrium.

If the undercooling or the overheating is very large,

DG* is very small. This is the case for a frozen-in

metastable state, which transforms to the stable state

upon heating. The so-called continuous nucleation rate

per unit volume _N T tð Þð Þ (i.e. the rate of formation of

particles of supercritical size (= nuclei)) is then only

determined by the atomic mobility for transport

through the interface, which for isothermal and non-

isothermal annealing can be given by an Arrhenius

term:

_NðT tð ÞÞ ¼ N0 exp � QN

RT tð Þ

� �
ð5aÞ

where N0 is a temperature-independent nucleation rate

constant, and QN is the activation energy for transfer

through the interface, defined as the temperature- and

time-independent activation energy for nucleation.

The number of nuclei equals 0 at t = 0.

It should be noted that for small undercooling or

overheating, DG* is not very small, and the argument

of the exponential term describing the number of

particles of critical size varies with temperature as –

B¢/TDT2, where B’ is a positive constant. Then the

temperature dependence of the rate of jumping

through the marix/particle interface may be neglected

with respect to the temperature dependence of the

formation of nuclei and the nucleation rate is given

by

_NðT tð ÞÞ ¼ N0 exp �DG�ðTðtÞÞ
RT tð Þ

� �
ð5bÞ

Note that DG* in Eq. 5b depends on temperature and

therefore on the basis of Eq. 5b an analytical treatment

is only possible for isothermal transformation.

So-called Avrami nucleation involves that the rate of

formation of supercritical particles at time t is given by,

_N T tð Þð Þ ¼ N0k exp �
Z t

0

kds

0
@

1
A ð6aÞ

where k is the rate at which an individual sub-critical

particle becomes supercritical: k(t = s) = k0 exp(– QN/

(RT(s))), with k0 as a temperature-independent rate

and N¢ as the total number of sub-critical particles at

t = 0. By variation of k0 the mode of nucleation can be

varied from site saturation (k0 infinitely large) to con-

tinuous nucleation (k0 infinitely small).

For isothermal annealing, k is constant, and Eq. 6a

becomes,

_N T; tð Þ ¼ N0k exp �ktð Þ ð6bÞ

For isochronal annealing (with T0 < T(t)) and QN

RT[[1

(usually QN

RT � 25),

Equation (6a) can be rewritten as [13],

_N TðtÞð Þ ffi N0k exp � Rk
QNU

T tð Þ2
� �

ð6cÞ

Physically meaningful combinations of the singular

nucleation modes presented above can be considered.

The so-called mixed nucleation mode involves that

the nucleation rate is equal to some weighted sum of

the nucleation rates according to site saturation and

continuous nucleation (here given for isothermal

transformation):

_NðTÞ ¼ N�d t � 0ð Þ þN0 exp �QN

RT

� �
ð7Þ

where N* and N0 represent the relative contributions of

the two modes of nucleation.

Avrami nucleation (Eq. 6) is intermediate between

site saturation and continuous nucleation: Avrami

nucleation tends to be continuous nucleation and site

saturation at the start and at the end of the transfor-

mation, respectively. Therefore, site saturation plus

Avrami nucleation could be considered as a modified

type of mixed nucleation discussed above (here given

for isothermal transformation; for a practical example,

see Ref. [15]),
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_NðT; tÞ ¼ N�d t � 0ð Þ þN0k exp �ktð Þ ð8Þ

A combination of continuous nucleation with Avrami

nucleation is physically not worthwhile to consider:

according to both nucleation modes the number of

nuclei continuously increases with progressing trans-

formation.

The diffusion-controlled and interface-controlled

growth modes can be given in a compact form. At time

t, the volume Y, of a particle nucleated at time s is

given by,

Y t; sð Þ ¼ g

Z t

s

mdt

2
4

3
5

d=m

ð9Þ

where g is a particle-geometry factor and m(t) = m0

exp(– QG/(RT(t))) with QG as the temperature and

time independent activation energy of growth. For

interface-controlled growth, m0 is a temperature-inde-

pendent interface velocity constant and QG represents

the energy barrier at the interface. For volume diffu-

sion-controlled growth (particle thickening obeys a

parabolic growth law), m0 equals the pre-exponential

factor for diffusion D0 and QG represents the activa-

tion energy for diffusion, QD. For d and m see below

Eq. 3.

The number of nuclei (= number of supercritical

particles) formed per unit volume, at time s during a

time lapse ds, is given by _N T sð Þð Þds, with _N T sð Þð Þ
according to Eqs. 4–8. The volume of each of these

nuclei grows from s until t according to Eq. 9 if it is

supposed that every particle grows into an infinitely

large parent phase, in the absence of the other growing

particles. In this hypothetical case, the volume of all

particles of the new phase at time t, which is called the

extended volume, Ve, is given by,

Ve ¼
Z t

0

V _N T sð Þð ÞY T t; sð Þð Þds ð10Þ

with V as the sample volume, which is supposed to be

constant throughout the transformation.

According to Eqs. 4–10, the extended volume for

cases of nucleation considered here (single nucle-

ation modes or mixtures of nucleation modes) can

be shown to be given by the addition of two parts:

one part that can be conceived as due to pure site

saturation and one part that can be conceived as

due to pure continuous nucleation. Then, by exten-

sive calculation, explicit analytical expressions for

the extended volume can be obtained (see Ref.

[13]).

In reality the particles do not grow individually into

an infinitely large parent phase: Ve does not account for

the overlap of particles (hard impingement) and their

possible surrounding diffusion fields (soft impinge-

ment). It is supposed here that the nuclei are dispersed

randomly throughout the total volume. The degree of

transformation, f, is then given by,

f ¼ Vt=V ¼ 1� exp �Ve

V

� �
ð11Þ

with Vt as the actual transformed volume.

On the basis of the mechanisms given in this section,

it can be shown that an analytical formulation for the

degree of transformation is possible that has the

structure of the JMA equation [13–15]:

f ¼ 1� exp �Kn
0an exp � nQ

RT

� �� �
ð12Þ

where a is identified either with the annealing time t for

isothermal transformation or with RT2/F for isochro-

nal transformation with F = dT/dt as the constant

heating rate (cf. Eqs. 1 and 2).

Unlike the extreme cases for which the JMA equa-

tion holds strictly (site saturation and continuous

nucleation), in general, n, Q, and K0 are not constant

but will be time (isothermal transformation) or tem-

perature (isochronal transformation) dependent. Ana-

lytical formulations for these time and temperature

dependencies of the kinetic parameters, n, Q, and K0,

are given in Tables 1–3.

The nucleation index, a

A nucleation rate accelerating or decelerating with

progressing transformation, can be described by the

incorporation of a nucleation index, a in the model for

continuous nucleation. To allow for a nucleation rate

increasing with progressing transformation, values of a

larger than one have to be considered, as done, for only

isothermal transformation, in Refs.[16, 18]. A nucle-

ation rate decreasing with progressing transformation,

implying, according to the treatment in this paper,

0 < a < 1, is also described by Avrami nucleation;

therefore the case for 0 < a < 1 is not considered

further here.

In the following, the effect of the nucleation index is

analyzed for the (more general) case of mixed nucle-

ation (i.e. combined site saturation and continuous
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nucleation; cf. section ‘Synopsis of theoretical back-

ground’) and for both isothermally and isochronally

conducted transformations.

Isothermal transformation

Anticipating the analysis of non-isothermal (isochro-

nal) kinetics, and differing from the earlier work

where the nucleation index was proposed originally

[16, 18], the nucleation index should be introduced

such that both time and temperature dependences of

the nucleation density can be considered. Thus the

linear relation between N and t for mixed nucleation

becomes,

NðT; tÞ ¼ N� þ N0t exp �QN

RT

� �� �a

ð13Þ

and the corresponding nucleation rate is then given by

(cf. Eq. 7), (Note that if a > 1 N0 and QN have only

empirical meaning)

_NðT; tÞ ¼ N�d t � 0ð Þ þ aNa
0 ta�1 exp � aQN

RT

� �
ð14Þ

Thus the extended volume can be given as (cf. Eq. 10),

Ve ¼ V

Z t

0

N�d s� 0ð Þ þ aNa
0s

a�1 exp � aQN

RT

� �� �

g

Z t

s

m0 exp �QG

RT

� �
dt

0
@

1
A

d=m

ds

ð15Þ

where N* and N0 represent the relative contributions

of the two modes of nucleation considered. Interface-

controlled growth has been adopted (see below Eq.

9); this is not a restriction; see below. Performing the

integrations in Eq. 15 results in,

Ve¼VN�gmd=m
0 exp �d=mQG

RT
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þ g
Yd=m

i¼1

i
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 !
VNa

0m
d=m
0 exp �d=mQGþaQN

RT

� �
td=mþa

ð16Þ

Now, applying an analogous treatment as that per-

formed in Ref. [13] (see Eqs. (16–22) in Ref. [13]), the

extended volume is rewritten as,T
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Ve ¼ Vgmd=m
0

Qd=m

i¼1

i
aþi

 ! �1

1þ r2
r1ð Þ
�1

N� 1þ r2

r1

� �� � 1
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r1� Na
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� ��1
 ! ! 1

1þ r2
r1ð Þ
�1

2
4

3
5

� exp �
d=mQG þ a

1þ r2=r1ð Þ�1 QN

RT

 !
t

d=mð Þþ a

1þ r2=r1ð Þ�1

ð17Þ

where r2/r1 represents the ratio between the extended

volume contributions ascribed to continuous nucle-

ation and site saturation [13]; see Table 2 and first part

of Table 1.

After substitution of Eq. 17 into Eq. 11, it can be

derived,

ln �ln 1� fð Þð Þ ¼ ln

gmd=m

0

Qd=m

i¼1

i
aþi

� � �1

1þ
r2
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N� 1þ r2
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Na
0 1þ r2
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6666664

3
7777775

�
d=mQGþ a

1þ r2=r1ð Þ�1 QN

RT

 !
þ d=mþ a

1þ r2

r1

� ��1

0
B@

1
CAlnt

ð18Þ

This result can be compared with the correspondingly

rewritten Eq. 12,

ln �ln 1� fð Þð Þ ¼ nln K0ð Þ � nQ

RT
þ nlna ð19Þ

By comparing Eqs. 19 and 18 time dependent expres-

sions for n, Q, and K0 result, which have been gathered

Table 2 Expressions for the (time and temperature dependency of the) growth exponent, n, the overall activation energy, Q, and the
rate constant, K0, to be inserted in Eqs. 1 and 2 for isothermal annealing and isochronal annealing, respectively

Mixed nuc Isothermal Isochronal

n d=mþ a

1þ r2=r1ð Þ�1 d=mþ a

1þ r2=r1ð Þ�1

Q
d
mQGþ n�d=mð ÞQN
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d
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n
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0
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i
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For Cc
* see Table 4. These values are valid for the analytical model based on mixed nucleation incorporating the nucleation index for

interface controlled growth, as presented in this paper

Table 3 Expressions for the (time and temperature dependency of the) growth exponent, n, the overall activation energy, Q, and the
rate constant, K0, to be inserted in Eqs. 1 and 2 for isothermal annealing and isochronal annealing, respectively

Continuous nucleation Isothermal a = 1 Isothermal a > 1 Isochronal a = 1 Isochronal a > 1

n d/m + 1 d/m + a d/m + 1 d/m + a

Q
d
mQGþQN

n

d
mQGþaQN

n

d
mQGþQN

n

d
mQGþaQN

n

K0
n gN0m

d=m

0

n

gN0m
d=m

0

n

gN0m
d=m

0
C�c Qn

n

gN0m
d=m

0
C�c Qn

n

Site saturation Isothermal QS = 0 Isothermal QS > 0 Isochronal QS = 0 Isochronal QS > 0

n d/m d/m d/m

Q QG

d
mQG�QS

d=m QG

K0
n gN*m0

d/m gN*m 0
d/m gN�md=m

0

Q
d=m

G

For Cc
* see Table 4. These values are valid for the analytical model based on continuous nucleation incorporating the nucleation index

and site saturation incorporating QS, as presented in this paper

m0 and QG have to be substituted by D0 and QD in case of volume diffusion controlled growth

J Mater Sci (2007) 42:573–587 579

123



in Table 2. Hence, incorporating a nucleation index

(a „ 1) does not affect the general equation for the

degree of transformation in case of isothermal trans-

formation (cf. Eq. 1). Similar results are obtained if

volume diffusion controlled growth is considered.

Isochronal transformation

The mixed nucleation rate for isochronal annealing, i.e.

with a constant heating rate F (= dT/dt), is given as (cf.

Eq. (26) in Ref. [13]),

_N T tð Þð Þ ¼ N�d
T tð Þ � T0

U

� �
þN0 exp � QN

RT tð Þ

� �
ð20Þ

where, T(t) = T0 + F t and T0 = T(t = 0). The number

of nuclei per unit volume of untransformed material

can be expressed as an integration of the nucleation

rate from T0 to T(t), i.e. as a function of T(t),

N ¼
ZT tð Þ

T0

N�d
T t0ð Þ �T0

U

� �
þN0 exp � QN

RT t0ð Þ

� �� �
d

T t0ð Þ
U

ffiN� þ RN0

QNU
T tð Þ2exp � QN

RT tð Þ

� �
ð21Þ

Equation 21 holds for the case of isochronal heating

with T0 < T(t) and QN

RT[[1 (usually QN

RT � 25Þ)[1].

Now, adopting the philosophy as described above

Eq. 13 for the case of isothermal annealing, it appears

appropriate for isochronal annealing to incorporate the

nucleation index a as follows,

N T tð Þð Þ ¼ N� þ RN0

QNU
T2 tð Þ exp � QN

RT tð Þ

� �� �a

ð22Þ

and the corresponding nucleation rate is given by,

_N T tð Þð Þ ffi N�d
T tð Þ � T0

U

� �
þ aNa

0

R

QNU

� �a�1

TðtÞ2ða�1Þ exp � aQN

RT tð Þ

� � ð23Þ

Thus the extended volume can be given as (see

Eq. 10),
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 !d=m

dT sð Þ
U

3
5 ð24Þ

where N* and N0 represent the relative contributions

of the two modes of nucleation considered. Interface-

controlled growth has been adopted (see below Eq.

(9)); this is not a restriction; see below. Now, applying

an analogous treatment as that performed in Ref. [13]

(see Eqs. 28–34 in Ref. [13]), the extended volume is

rewritten as,

Ve ¼ Vgmd=m
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�
ð25Þ

with Cc
* as a constant, defined by the activation ener-

gies of nucleation and growth as well as the nucleation

index, a (see Table 4); for r2/r1, see Table 2.

After substitution of Eq. 25 into Eq. 11 it can be

derived,

ln �ln 1� fð Þð Þ ¼ln

gmd=m
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0
B@

1
CAln

RT2

U

� �

ð26Þ

By comparing Eqs. 19 and 26 temperature dependent

values of n, Q and K0 result, which have been

gathered in Table II. Hence, incorporating a nucle-

ation index (a > 1) does not affect the general

equation for the degree of transformation in case of

isochronal transformation (cf. Eq. 2). Similar results

are obtained if volume diffusion controlled growth is

considered.
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Experimental example: crystallization

of amorphous Zr50Al10Ni40

To illustrate the importance of including the nucleation

index into the description of transformation kinetics,

the transformation model has been applied, using dif-

ferent combinations of nucleation and growth modes

(see sections ‘Synopsis of theoretical background and

The nucleation index, a), to describe the rate of en-

thalpy change, measured by DSC, due to isochronal

crystallization of amorphous Zr50Al10Ni40. For details

about the experiments performed, see Ref. [20]. The

measured heat release due to crystallization is pro-

portional to df/dT i.e. dDH

dT
¼ DHt

df

dT
with DHt as the

total enthalpy of crystallization. DHt
df

dT
has been cal-

culated on the basis of Eqs. 25 and 11 and has been

fitted to the experimental DSC data dDH

dT
. The general

fitting procedure as proposed and described in Ref.

[15] was applied.

The best fit was obtained adopting mixed nucleation

and interface-controlled growth as modes of nucleation

and growth. Incorporation of the nucleation index was

essential to arrive at a good fit: Results obtained by

fitting using an imposed value of a = 1 (implying no

effect of the nucleation index) can be compared with

the results obtained by the general fitting yielding

a = 4.6: see Fig. 1(a, b). A value of the nucleation in-

dex significantly larger than one indicates that the

nucleation rate is substantially increased during the

transformation. This is reflected in the occurrence of

relatively high transformation-rate maxima, which

cannot be described by classical nucleation modes, as

continuous nucleation in a JMA description (Fig. 1).

Temperature dependence of site saturation:

‘‘activation energy’’ for supercritical particle formation

Upon rapid cooling/quenching of a phase stable at

elevated temperature this phase can become metasta-

ble at lower temperatures, e.g. an amorphous alloy or a

supersaturated crystalline solid solution may occur,

which strives for crystallization or decomposition,

respectively. Depending on the precise thermal history

of such metastable phases a certain amount of particles

of a new, stable phase may have been ‘‘frozen in’’. If a

heat treatment is applied subsequently to such a

metastable phase with ‘‘frozen-in’’ particles of the new,

stable phase, then those particles larger than the criti-

cal size (which are called the nuclei of the new, stable

phase [3]) can grow, implying occurrence of site satu-

ration (cf. section ‘Synopsis of theoretical back-

ground’). Given a certain size distribution for the

‘‘frozen-in’’ particles of the new, stable phase, it is

evident that the number of nuclei (= supercritical

particles) acting in the site saturation nucleation

mechanism is temperature dependent. Hence it

Table 4 Expressions for the correction factor, Cc
*, (c.f. Table 2)

d
m Cc

*

Interface-controlled
growth

1 2
aQa

N
aQNþQGð Þ

2 6
aQa

N
aQNþQGð Þ aQNþ2QGð Þ

3 24
aQa

N
aQNþQGð Þ aQNþ2QGð Þ aQNþ3QGð Þ

Diffusion-controlled
growth

1/2 QD

2aQa
N

aQNþ1=2QDð Þ

h i

1 2
aQa

N
aQNþQDð Þ

h i

3/2 5
2

Q
1=2

G
3QDþ4QNð Þ

4aQa
N

aQNþ1
2QDð Þ aQNþQDð Þ aQNþ3

2QDð Þ
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Fig. 1 Rate of enthalpy change, dDH/F dt = dDH/dT due to
isochronal crystallization of amorphous Zr50Al10Ni40, at the
heating rates indicated, as measured (solid lines) and as fitted
(dotted lines) by adopting mixed nucleation as nucleation mode
(a) a = 4.6 and (b) a = 1, and interface-controlled growth as
growth mode
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appears appropriate to introduce an ‘‘activation en-

ergy’’, Qs, controlling the number of frozen-in nuclei

acting in the transformation.

The critical size of the frozen-in new phase particles

depends on temperature as C/(DT)[19]. Hence the crit-

ical size increases with decreasing undercooling, DT, i.e.

generally with increasing annealing temperature.

Assuming that the size distribution of the frozen-in

particles of the new, stable phase exhibits an exponential

tail, i.e. the number of particles decreases exponentially

for increasing particle size, a description of the temper-

ature dependence of the number of supercritical parti-

cles operating in the site saturation nucleation mode

according to exp QS

RT

� �
appears reasonable. (Note that the

number of active sites decreases with increasing

annealing temperature: thus QS is not an activation

energy in the usual sense, which would have required a

minus sign in the argument of the exponent).

It is important to distinguish between isothermal

and non-isothermal transformations. Evidently, at

constant temperature QS fully determines the con-

stant number of nuclei at t ‡ 0. However, a compli-

cation occurs for non-isothermal transformations.

Consider the case of increasing temperature during

the transformation (as in isochronal annealing

experiments). Without more ado it cannot be ex-

cluded that particles of the new phase which are

supercritical at T1 become subcritical at T2(> T1),

albeit growth has occurred during heating up from

T1 to T2. Hence, in order to know the number of

active sites in the site saturation mechanism in non-

isothermal experiments, the competition between the

heating rate and the growth rate has to be consid-

ered. Here the analytical treatment is only per-

formed for the isothermal case.

For isothermal transformations conducted at dif-

ferent annealing temperatures, different values for the

number of the supercritical particles occur for each

annealing temperature T. Equation 4 can then be

rewritten as,

_NðT; tÞ ¼ N�S exp
QS

RT

� �
d t � 0ð Þ ð27Þ

with NS
* as a constant. It follows for the extended vol-

ume (cf. Eq. 10),

Ve ¼V

Z t

0

N�S exp
QS

RT

� �
d s� 0ð Þ

� �
g

�
Z t

s

m0 exp �QG

RT

� �
dt0

0
@

1
A

d=m

ds

ð28Þ

where interface-controlled growth has been adopted

(see below Eq. 9); this is not a restriction; see below.

Proceeding analogously to the treatment in section

‘Isochronal transformation’, it is obtained,

Ve ¼ Vgmd=m
0 N�S exp � d=mQG �QS

RT

� �
t d=mð Þ ð29Þ

After substitution of Eq. 29 into Eq. 11 it is obtained

for the dependence on time for the degree of trans-

formation,

ln �ln 1� fð Þð Þ ¼ ln gmd=m
0 N�S

h i

� d=mQG �QS

RT

� �
þ d=mð Þlnt

ð30Þ

Comparing Eq. 30 with Eq. 19 it follows that constant

values of n, Q and K0 occur in this case; see Table III.

Time dependent values for n, Q and K0 were de-

rived in this work for the combination of site saturation

with either continuous nucleation or Avrami nucle-

ation; see the results presented in Table 1. The intro-

duction of QS leads to the following modified

expression for the effective, overall, activation energy

(cf. Eq. 3):

Q ¼
d=m QG � QS

d=m

� �
þ n� d=mð Þ QN þQSð Þ

n
ð31Þ

Similar results are obtained if volume diffusion con-

trolled growth is considered. Hence, incorporating QS

does not affect the general equation for the degree of

transformation in case of isothermal transformation

(cf. Eq. 1).

Recipes for determination of kinetic parameters
from isothermally and isochronally conducted

transformations

Fitting of the general Eqs. 1 and 2, after insertion of the

appropriate expressions for n, Q, and K0 (see Tables 1–

3) to a series of isothermal anneals or to a series of

isochronal anneals, respectively, leads to determination

of the model parameters which are for the cases con-

sidered here: QN and QG, or QN and QG and a (i.e.

incorporating the nucleation index), and m0, together

with either N* and N0 (site saturation and continuous

nucleation) or N¢ and k0 (Avrami nucleation) or N*, N¢,
and k0 (site saturation plus Avrami nucleation). Note

that the incorporation of QS changes the model

parameters QN and QG into QN
¢ = QN + QS and
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QG
¢ = QG – QS/d/m (see Eq. 31); in the following only

the symbols QN and QG will be used. The numerical

procedure for fitting and a discussion on independent

vs. dependent fit parameters have been given in Ref.

[15].

The most important kinetic parameters for phase

transformation obviously are the growth exponent, n,

the effective activation energy, Q, and the nucleation

and growth activation energies, QN and QG. It would be

very useful if a simple, direct method, instead of the

elaborate numerical approach discussed in Ref. [15],

could be proposed to obtain values for these particular

kinetic parameters. It is shown in this section that, in-

deed, simple recipes can be given for determination of

the time and/or temperature dependent growth expo-

nent, n, and effective activation energy, Q. Subse-

quently, the constant QN and QG values can be

determined from the dependence of Q on n using Eq. 3.

The following recipes are derived here on the basis

of mixed nucleation incorporating the nucleation index

a; for general validity of the recipes, see section

‘General applicability of the recipes; determination of

the constant activation energies for nucleation, QN,

and growth, QG’.

Isothermal transformation

Growth exponent, n(f)

In classical JMA analysis (then n, Q, and K0 do not

depend on transformation time), a plot is made of

ln(– ln(1 – f)) vs. ln(t) (cf. Eq. 19). Thus a straight line

occurs with slope n = d/m + 1 in case of pure contin-

uous nucleation or n = d/m in case of pure site satu-

ration. This is also valid if a and QS are introduced in

case of pure continuous nucleation and pure site

saturation, respectively.

According to the kinetic model (cf. Tables 1 and 2),

n is in general a function of both transformation time

and temperature. The ratio r2/r1 can be rewritten for

isothermal transformation, for mixed nucleation

incorporating the nucleation index, as cta (with c as a

constant; cf. Tables 1 and 2). It then follows from Eq.

19 that,

d ln �ln 1� fð Þð Þð Þ
dlnt

¼ d=mþ a

1þ r2

r1

� ��1
¼ n tð ÞT¼ n fð ÞT

ð32Þ

The curve obtained by plotting ln(– ln(1 – f)) vs. ln (t)

also not yield truly straight line. The slope at time t

provides the value of n(t) at time t. Only for the

limiting cases, r2/r1 fi 0 or r2/r1 fi ¥, the ln(– ln(1 –

f)) vs. ln(t) curve becomes a straight line with d(ln(–

ln(1 – f)))/dln(t) equal to d/m or d/m + a, respectively.

Once the dependence of n on t is known the depen-

dence of n on f, for the annealing temperature consid-

ered, can be determined straightforwardly from each

isothermal annealing experiment as the relation

between t and f has been determined experimentally

for each annealing temperature.

Effective activation energy, Q(f)

Values for the activation energy can be obtained from

the lengths of time, tf, needed to attain a certain fixed

value of f at different isothermal annealing tempera-

tures. The data points in a plot of ln(tf) vs. 1/T are

usually approximated by a straight line, from the slope

of which, a value for Q(f) independent of the

annealing temperature is obtained [1]. This linearity in

the plot of ln(tf) vs. 1/T occurs only if the effective

activation energy, Q, is constant during the transfor-

mation.

According to the kinetic model (cf. Tables 1 and 2),

Q is in general both a function of transformation time

and temperature. The ratio r2/r1 can be expressed as

c¢ta exp(– aQN/RT) (with c’ as a constant; cf. Tables 1

and 2). Differentiation of both sides of Eq. 19 with

respect to 1/T then gives,

d lntf
� �

d 1=Tð Þ ¼

d=mQG þ a

1þ r2
r1

� ��1 QN

d=mþ a

1þ r2
r1

� ��1

0
B@

1
CAR

¼ Q fð ÞT
R

;

with Q fð ÞT¼
d=mQG þ n fð ÞT�d=m

� �
QN

n fð ÞT
ð33Þ

Plotting of ln(tf) vs. 1/T will not yield a truly straight

line. Thus the value of Q(f) depends on the tempera-

ture where the slope of the plot of ln(tf) vs. 1/T is taken.

To determine the slope in practice, several annealing

temperatures are required. The slope of the straight

lines drawn through the data points of two of these

temperatures can then be considered as an approxi-

mation for Q(f) corresponding to a temperature be-

tween these two annealing temperatures.

Only for the limiting cases, r2/r1 fi 0 or r2/r1 fi ¥,

the ln(tf) vs. 1/T curve becomes a truly straight line and

Q then equals QG or (d/mQG + aQN)/n, corresponding

to n = d/m and n = d/m + a, respectively. The depen-

dence of Q on f at different temperatures can be
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determined by repeating the above procedure for a

chosen number of f values.

Isochronal transformation

Growth exponent, n(f)

Values for the growth exponent can be obtained from

the transformed fraction, fT, attained at a certain fixed

value of T, as measured for different heating rates. The

data points in a plot of ln(– ln(1 – fT)) vs. ln(F) can be

represented by a straight line if the growth exponent, n,

is constant during the transformation. The slope of this

straight line then equals n.

According to the kinetic model (cf. Tables 1 and 2),

n(f) is in general a function of both transformation

temperature and heating rate. Differentiation of both

sides of Eq. 26 with respect to lnF then gives,

d ln �ln 1� fTð Þð Þð Þ
dln Uð Þ ¼ d=mþ a

1þ r2

r1

� ��1

¼ nðTÞU ¼ n fð ÞU

ð34Þ

Plotting of ln(– ln(1 – fT)) vs. ln(F) will not yield a

truly straight line. Thus the value of n(T)F depends on

the heating rate where the slope of the plot of ln(–

ln(1 – fT)) vs. ln(F) is taken. To determine the slope in

practice, several heating rates are required. The slope

of the straight lines drawn through the data points of

two of these heating rates can be considered as an

approximation for n(T)F corresponding to a heating

rate between these two heating rates. Only for the

limiting cases, r2/r1 fi 0 or r2/r1 fi ¥, the above curve

becomes a straight line with their slopes equal to d/m

or d/m + a, respectively. The dependence of n (at a

fixed F) on T can be determined by repeating the

above procedure for a chosen number of T values.

Once for a certain heating rate the dependence of n on

T is known, the dependence of n on f, for the heating

rate considered, can be determined as the relation

between f and Thas been determined experimentally.

Effective activation energy, Q(f)

Values for the activation energy can be obtained upon

isochronal annealing from the temperature, Tf, needed

to attain a certain fixed value of f, as measured for

different heating rates. The data points in a plot of

ln(Tf
2/F) vs. 1/Tf are usually approximately by a

straight line, from the slope of which a value for Q(f)

independent of the heating rate is obtained [1]. This

linearity in the plot of ln(Tf
2/F) vs. 1/Tf occurs only if

the effective activation energy, Q, is constant during

the transformation.

For the case of constant effective activation energy,

the above approach was proposed originally by Kis-

singer [21] for special cases of reaction kinetics,

although, instead of Tf, the temperature where the

transformation-rate maximum occurs was used. The

corresponding, so-called Kissinger procedure has been

and is often used, usually without justification. Mitte-

meijer [1] was the first to derive the general validity of

the analysis, provided that the temperature of maximal

transformation rate is replaced by the temperature of

the same degree of transformation, Tf.

According to the kinetic model (cf. Table 2), Q is in

general a function of both transformation temperature

and heating rate. Differentiation of both sides of Eq. 26

with respect to 1/Tf gives,

d lnT2
f =U

� �
d 1=Tf

� �
R
¼ �

d
m QG þ a

1þ r2
r1

� ��1 QN

d=mþ a

1þ r2
r1

� ��1

¼ �Q fð ÞU;

with Q fð ÞU¼
d=mQG þ n fð ÞU�d=m

� �
QN

n fð ÞU

ð35Þ

Plotting of ln(Tf
2/F) vs. 1/Tf will not yield a truly straight

line. Thus the value of Q(f) depends on the heating rate

where the slope of the plot of ln(Tf
2/F) vs. 1/Tf is taken. To

determine the slope in practice, several heating rates are

required. The slope of the straight lines drawn through

the data points of two of these heating rates can be con-

sidered as an approximation for Q(f) corresponding to a

heating rate between these two heating rates. Only for the

limiting cases, r2/r1 fi 0 or r2/r1 fi ¥, ln(Tf
2/F) vs. 1/Tf

becomes a truly straight line and Q then equals to QG or

(d/mQG + aQN)/n, respectively. The dependence of Q on

f at different heating rates can be determined by repeating

the above procedure for a chosen number of f values.

Product of growth exponent and effective activation

energy, Q(f)n(f)

Analogous to section ‘Growth exponent, n(f)’ for iso-

thermal transformation, in classical JMA analysis (then

n, Q, and K0 do not depend on transformation tem-

perature) and for isochronal transformation, a plot can

be made of ln(– ln(1 – f)) vs. ln(1/T) (cf. Eq. 26) at

constant heating rate. Thus a straight line occurs with

slope – nQ/R = – (d/mQG + QN)/R in case of pure

continuous nucleation or – nQ/R = – d/mQG/R in

case of pure site saturation. This is also valid if a is

introduced in case of pure continuous nucleation.
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According to the kinetic model (cf. Tables 1 and

2), n and Q are in general a function of both trans-

formation temperature and heating rate. Differentia-

tion of both sides of Eq. 26 with respect to 1/T then

gives,

d ln �ln 1� fð Þð Þð Þ
dð1=TÞ ¼ �

d=mQG þ a

1þ r2
r1

� ��1 QN

R

� 2 d=mþ a

1þ r2

r1

� ��1
QN

0
B@

1
CAT

¼ � n Tð ÞQ Tð Þ½ �U
R

� 2n Tð ÞUT

ð36Þ

If Q >> RT, plotting of ln(– ln(1 – f)) versus 1/T

gives a curve (or straight line) with slope equal

to � n Tð ÞQ Tð Þ½ �U
R . Hence the slope of the curve of ln

(– ln(1 – f)) vs. 1/T at temperature T provides the value

of [n(T)Q(T)] at heating rate F. Only for the limiting

cases, r2/r1 fi 0 or r2/r1 fi ¥, the ln(– ln(1 – f)) vs. 1/T

curve becomes a straight line with d(ln(– ln(1 – f)))/

d(1/T) equal to – d/mQG/R or – (d/mQG + aQN)/R,

respectively. Thus the dependence of (n(T)Q(T))F on

f, for the heating rate considered, can be determined

from each isochronal annealing experiment as the

relation between T and f has been determined exper-

imentally for each heating rate.

General applicability of the recipes; determination

of the constant activation energies for nucleation,

QN, and growth, QG

The above recipes have been deduced analytically here

for phase transformations controlled by mixed nucle-

ation (site saturation and continuous nucleation

(incorporating the nucleation index)), and either

interface-controlled growth or diffusion-controlled

growth.

For Avrami nucleation or site saturation plus Av-

rami nucleation as nucleation mechanisms, these reci-

pes cannot be derived analytically. However, as will be

shown below by numerical calculations, the principles

of the recipes given hold also in these cases.

Using the values for the model parameters as given

in Table 5, numerical calculations of f have been per-

formed for four different temperatures (T = 580, 590,

600, and 610 K) as a function of time (isothermal

annealing) and for four different heating rates

(F = 0.05, 0.25 1.25, and 6.25 K/s) as a function of

temperature (isochronal annealing).

For the case of site saturation plus Avrami nucle-

ation as nucleation mechanism and interface-con-

trolled growth as growth mechanism, the numerically

calculated evolutions of n with f and of Q with f (on the

basis of Eqs. 1 (see Table 1) and 11), for isothermal

transformation, are shown in Fig. 2a and b, respec-

tively. As expected, for the kinetic model considered,

the values of n and Q as a function of f are both not

constant and depend on the transformation tempera-

ture. Applying the recipe given by Eq. 32 for the

considered temperatures gives sets of n values (data

points in Fig. 2a), which agree well with the exact

values of n (lines in Fig. 2a) over the entire range of f.

Applying the recipe given by Eq. 33 for the considered

temperatures gives sets of Q values (data points in

Fig. 2b). The value of Q is determined by the slope

between the data points of two applied temperatures

(see discussion below Eq. 33). The results thus ob-

tained agree very well with the exact values of Q as

calculated for the mean temperature of the two applied
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Fig. 2 The growth exponent, n (a) and the effective activation
energy, Q (b), as a function of the transformed fraction, f, for
isothermal transformation controlled by Avrami nucleation plus
site saturation as nucleation mode and interface-controlled
growth as growth mode, at temperatures of 580, 590, 600 and
610 K, calculated using the values of the kinetic parameters as
given in Table 5. Lines: model results; Symbols: results obtained
by application of the recipes given by Eqs. 32 and 33, respectively
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temperatures (full lines in Fig. 2b), over the entire

range of f.

The n values for the temperatures and transformed

fractions considered in Fig. 2b can be obtained by

straightforward interpolation from the data of the

temperatures given in Fig. 2a. The dependence of Q(f)

on n(f), at a fixed temperature (here, e.g. 585, 595 and

605 K), is obtained. Fitting of Eq. 3 to these (Q(f), n(f))

data for the same temperature leads to values for the

separate, constant activation energies for nucleation

and growth, QN and QG. The values thus obtained

(QN = 98 kJ/mol) and (QG = 202 kJ/mol) are (indeed)

practically equal to the true values (see Table 5).

For the case of site saturation plus Avrami nucle-

ation as nucleation mechanism and interface-con-

trolled growth as growth mechanism, the numerically

calculated evolutions of n with f and Q with f, for

isochronal transformation(on the basis of Eqs. 2 (see

Table 1) and 11), are shown in Figs. 3a and b, respec-

tively. As expected, for the kinetic model considered,

the values of n and Q as a function of f are both not

constant and depend on the heating rate. Applying the

recipes given by Eqs. 34 and 35 to the transformation

curves at the considered heating rates gives sets of n(f)

and Q(f) values (data points in Fig. 3). The values of

n(f) and Q(f) are determined by the slope between

data points of two applied heating rates (see discus-

sions below Eqs. 34 and 35). Combining the results

shown in Figs. 3a and b, the dependence of Q(f) on

n(f), at a fixed heating rate, is obtained. Fitting of Eq. 3

to these (Q(f), n(f)) data for the same heating rate

leads to values for the separate, constant activation

energies for nucleation and growth, QN and QG. The

values thus obtained (QN = 95 kJ/mol) and

(QG = 204 kJ/mol) are practically equal to the true

values (see Table 5).

Conclusions

(1) To describe phase transformation kinetics, gener-

ally applicable JMA-like equations are possible taking

the growth exponent, n, the effective activation energy,

Q, and the pre-exponential factor, K0, as time and/or

temperature dependent. This work has led to analytical

expressions for n, Q and K0 for two cases:

(i) adoption of the nucleation index, a, to allow for a

nucleation rate increasing with progressing trans-

formation; the resulting transformation model

could be fitted very well to the isochronal crys-

tallization of amorphous Zr50Al10Ni40 alloys;

(ii) introduction of temperature dependence of site

saturation, i.e. adoption of an ‘‘activation energy’’

for supercritical particle formation in site satu-

ration.

(2) Several generally applicable recipes have been

derived to deduce the growth exponent, n, and the
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Fig. 3 The growth exponent, n (a) and the effective activation
energy, Q (b), as a function of the transformed fraction, f, for
isochronal transformation controlled Avrami nucleation plus site
saturation as nucleation mode and interface-controlled growth as
growth mode, at heating rates of 0.05, 0.25, 1.25, 6.25 K/s,
calculated using the values of the kinetic parameters as given in
Table 5. Lines: model results; Symbols: results obtained by
application of the recipes given by Eqs. 34 and 35, respectively

Table 5 Values of the kinetic parameters used for the numerical
calculations of isothermally and isochronally conducted phase
transformations for the case of site saturation plus Avrami

nucleation as nucleation mode and interface controlled growth as
growth mode

Parameters d/m N* m–3 N¢ m–3 s–1 k0 s–1 QN kJ mol–1 QG kJ mol–1 m0 ms–1

Values 3 1 · 1010 5 · 1015 1 · 106 100 200 109
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effective activation energy, Q, both as function of time

(isothermal transformation) or temperature (isochro-

nal transformation), directly from measured kinetic

data. The resulting dependence of Q on n leads to

straightforward determination of the constant activa-

tion energies for nucleation and growth.
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